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Abstract

This paper presents an efficient reduced-order modelling approach based on the boundary element method. In this

approach, the eigenvalue problem of the unsteady flows is defined based on the unknown wake singularities. By

constructing this reduced-order model, the body quasi-static eigenmodes are removed from the eigensystem and it is

possible to obtain satisfactory results without using the static correction technique when enough eigenmodes are used.

In addition to the conventional method, eigenanalysis and reduced-order modelling of unsteady flows over a NACA

0012 airfoil, a wing with NACA 0012 section and a wing–body combination are performed using the proposed reduced

order modelling (ROM) method. Numerical examples are presented that demonstrate the accuracy and computational

efficiency of the present method.

r 2006 Published by Elsevier Ltd.
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1. Introduction

Reduced-order modelling (ROM) is a conceptually novel and computationally efficient technique that has been

recently used in the analysis of unsteady flows. Unsteady flow eigenmodes are used to construct reduced-order models

similar to the normal mode analysis commonly used in structural dynamics. The advantage of a modal approach is that

one may construct a reduced-order model by retaining only a few of the original modes. Eigenanalysis of unsteady

potential flows about flat airfoils, cascades and wings have been applied by Hall (1994). He constructed reduced-order

models based on an unsteady incompressible vortex lattice method and found that to obtain satisfactory results, the

static correction technique must be used. Florea and Hall (1994) created ROM in the time domain for linearized

potential flow about airfoils. Also, ROM have been used for aerodynamic modelling of helicopter blades (Tang et al.,

1998b) using Peters’ (1994) finite state airloads model and using nonlinear aeroelastic systems (Tang et al., 1998a).

Romanowski and Dowell (1996) applied ROM to subsonic unsteady flows, based on the Euler equations, around a

NACA 0012 airfoil. ROM of unsteady viscous flow in a compressor cascade based on the coupled potential flow and
e front matter r 2006 Published by Elsevier Ltd.
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boundary-layer approximation has been applied by Florea et al. (1998), and the status of ROM for unsteady

aerodynamic systems has been reviewed by Dowell (1996) and Dowell et al. (1997).

Esfahanian and Behbahani-Nejad (2002) applied ROM to the subsonic unsteady flows about complex configurations

using a boundary element method. They indicated that the zero eigenvalues of the unsteady model are equal to the

number of elements that lie on the body (Behbahni-Nejad, 2002). The corresponding eigenmodes behave exactly

in a quasi-static fashion, and ROM without the static correction cannot generate satisfactory results, even with a large

number of eigenmodes. On the other hand, ROM based on a body and its wake eigenmodes (conventional

ROM) can give satisfactory results only when the static correction technique is applied. However, when this correction

is applied, the quasi-steady part of the solution must be computed for each time step, which alters the efficiency of

ROM. By constructing a reduced-order model based only on the wake eigenmodes, the body quasi-static eigenmodes

are removed and it is possible to obtain satisfactory results without the static correction technique. This concept has

been recently applied by Behbahani-Nejad et al. (2005) for unsteady flow computations based on the vortex lattice

method.

For unsteady flow computations about real and complex geometries, one needs a numerical approach other than the

vortex lattice method. The boundary element method (BEM) has been known as a powerful numerical technique in

engineering analysis. In CFD analysis and especially heat transfer problems, BEM plays an important and efficient role.

In the beginning, this method was used in linear problems, but it developed quickly to analyze nonlinear problems too.

One of its main advantages is the reduction of the problem dimensionality by one, since it will be required to discretize

only the boundary of the computational domain.

The main objective of the present work is to develop an efficient ROM solver based on BEM for computation of

unsteady flows around complex configurations. Coupling of the present method with modal analysis in structural

dynamics will lead to a powerful tool for aeroelastic response calculations.

In this context, an alternative formulation based on the boundary element method is presented by which the

eigenvalue problem is defined based only on the unknown wake singularities. Using this approach, ROM of unsteady

flows about a NACA 0012 airfoil, a wing with NACA 0012 section and a wing–body combination are studied. The

results show that the present reduced-order modelling approach (PROM) without static correction can produce

satisfactory results when enough eigenmodes are used, depending on the properties of the system under consideration.

Also, one can use more efficiently the static correction technique along with the present approach to obtain satisfactory

results with a few eigenmodes. The present ROM can accurately and more efficiently analyze unsteady flows in

comparison with the conventional reduced-order models (CROM).
2. Boundary element formulation

For the case of an incompressible, inviscid, irrotational flow, the Navier–Stokes equations can be reduced to the

classical Laplace equation. From Green’s second identity, it is shown (Katz and Plotkin, 2001) that a solution to

Laplace’s equation in the flow field can be expressed in integral form over the boundary surfaces, namely

4pcfP ¼

Z
SB

f
q
qn

1

r

� �
�

1

r
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qn

� �
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where r is the distance from the point P to the boundary element dS, f is perturbation velocity potential, n is the unit

normal vector to the surface pointing into the flow field of interest, and SB and SW are the surfaces of the body and the

wake, respectively.

Moreover, c ¼ 1/2 if P is on a smooth part of the surface and DfW is directly related to the velocity potential values

at the trailing edge by the Kutta condition, that is,

DfW ¼ fU
B � fL

B. (2)

For two-dimensional unsteady flows, Eq. (1) reduces to (Katz and Plotkin, 2001)

2pcfP ¼

Z
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q
qn
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To solve the boundary integral Eq. (1) numerically, the surfaces SB and SW are discretized into small quadrilateral

elements, and constant-strength singularity distributions (of sources qf=qn and doublets f) are distributed on each
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element. Therefore, the collocation method yields the following relations for each collocation point on the body:

fPh ¼
XNB

k¼1

AhkfPk þ
XNB

k¼1

Bhk

qf
qn

� �
Pk

þ
XNW

k¼1

Ahk DfPk, (4)

where NB and NW are the number of elements on the body and the wake, respectively. The coefficients Ahk, Bhk in

Eq. (4) represent the influence of the kth element singularity distribution on hth collocation point [for more details see

Esfahanian and Behbahani-Nejad (2002) and Katz and Plotkin (2001)].

The second term in the right-hand side of Eq. (4) is known from the tangency condition at each time step. Moreover,

Df is determined via the Kutta condition and Kelvin’s theorem (Esfahanian and Behbahani-Nejad, 2002). Hence, if

Eq. (4) is applied at all of the collocation points over the body and the vector m is defined as

m ¼ f1;f2; . . . ;fNB;Df1;Df2; . . . ;DfNW

� �
, (5)

one can obtain

Amnþ1 þ Bmn ¼ wnþ1. (6)

Given a prescribed time history of the body motion, Eq. (6) is simply marched in time from one time level (n) to the next

(n+1) to find the time history of the strengths of the doublet elements. When the velocity potential is determined, the

resulting pressure coefficient can be computed as (Katz and Plotkin, 2001)

CP ¼ 1�
V2

V2
1

�
2

V2
1

qf
qt

, (7)

where V is the local fluid velocity on the body surface.
3. Conventional reduced-order modelling

In this section, the development of ROM as given by Hall (1994) will be presented for the sake of the clarity of the

paper. Consider the homogeneous part of Eq. (6), setting m ¼ xie
li t and zi ¼ eliDt, one obtains

ziAxi þ Bxi ¼ 0, (8)

where li and zi are ith eigenvalues in the l and z planes, respectively, and xi is the corresponding eigenvector. More

generally, Eq. (8) can be written as

AXZ þ BX ¼ 0, (9)

where Z is a diagonal matrix containing the eigenvalues and X is a matrix with columns representing the right

eigenvectors. On the other hand, the left eigenvectors satisfy

ATYZ þ BTY ¼ 0, (10)

where Y is a matrix with rows that are the left eigenvectors. If the eigenvectors are normalized suitably, they satisfy the

orthogonality conditions

YTAX ¼ I , (11)

YTBX ¼ �Z. (12)

The dynamic behavior of the fluid flow can be represented as the sum of the individual eigenmodes, that is,

m ¼ Xc, (13)

where c is the vector of normal mode coordinates. Substitution of Eq. (13) into Eq. (6), premultiplying by YT and

making use of the orthogonality condition gives a set of N uncoupled equations for the modal coordinates c, namely,

cnþ1 � Zcn ¼ YTwnþ1. (14)

Now one may construct a reduced-order model by retaining only a few of the original modes. However, the preceding

reduced-order model does not produce satisfactory results unless the static correction is applied (Hall, 1994). For

applying the static correction technique, it is a normal procedure to decompose the unsteady solution into two parts.

One part is equivalent to the response of the system if the disturbance is quasi-steady, and the other part is the dynamic
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part. Therefore, the unsteady solution can be defined as follows:

mn ¼ mn
s þ mn

d , (15)

mn ¼ mn
s þ X ~cn. (16)

The quasi-steady portion ms is given by

Aþ B½ �mn
s ¼ wn. (17)

Thus, the proposed reduced-order model can be written as

~cnþ1 � Z ~cn ¼ YTwnþ1 � YTðAmnþ1
s þ Bmn

s Þ. (18)
4. Present reduced-order modelling

Pervious works (Esfahanian and Behbahani-Nejad, 2002; Behbahani-Nejad et al., 2005) have shown that the

existence of zero eigenvalues in the eigensystem is the main reason for needing to apply a static correction technique.

Hence, by constructing a reduced-order model based only on the wake eigenmodes, the body quasi-static eigenmodes

can be removed. Here, we apply this technique for unsteady flow computations based on the boundary element method.

Because of the existence of the Kutta elements (Eq. (2)) adjacent to the trailing edge, it can be shown that in the present

method the number of zero eigenvalues of the unsteady model is more than the number of elements that lie on the body.

Let us define mb as the vector of the body and the Kutta doublet strengths and mw as the vector of the wake doublet

strengths. Using these definitions, one can write

m ¼
mb

mw

( )
. (19)

Now, Eq. (6) can be written as
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, (20)

or splitting into two equations

A11mnþ1
b þ A12mnþ1

w þ B11mn
b þ B12mn

w ¼ wnþ1
b , (21)

A21mnþ1
b þ A22mnþ1

w þ B21mn
b þ B22mn

w ¼ 0. (22)

It can be shown that the matrices B11, B12 and A21 are zero and, therefore, Eq. (21) results in

mnþ1
b ¼ A�111 wnþ1

b � A�111 A12mnþ1
w . (23)

Substitution of Eq. (23) into Eq. (22) gives

Anewmnþ1
w þ Bnewmn

w ¼ wn
new, (24)

where

Anew ¼ A22, (25)

Bnew ¼ B22 � B21A�111 A12, (26)

wn
new ¼ �B21A�111 wn

b. (27)

Since Eq. (24) is only in terms of the wake doublet strengths, the corresponding eigensystem has no zero eigenvalue and

one may construct accurate reduced-order models without using the static correction technique.
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5. Results and discussion

5.1. Test case models

The examples presented in this section serve mainly for the validation of the proposed method and help to

demonstrate the capability and efficiency of this approach. Hence, for the numerical computation, first a NACA 0012

airfoil is considered as a two-dimensional test case. The airfoil is modelled using 72 boundary elements with cosine

distribution. The wake length is taken to be 10 times the chord length and it is discretized using 100 elements. Also, a

three-dimensional wing with the NACA 0012 airfoil section and the aspect ratio 4.0, is used as a three-dimensional test

case (Fig. 1). The surface of the wing is modelled using 20 elements in both the chordwise and spanwise directions. The

wake length is taken to be 10 times the chord length and discretized using 40 elements in streamwise direction. As the

wing is symmetric, only half of the wing is modelled in the computational domain.

To show the capability of the PROM using BEM in unsteady flow analysis over complex configurations, a

wing–body combination is considered as shown in Fig. 2. Fig. 3 shows the computational mesh over the wing–body and

its wake. Because of symmetry, half of the wing–body and its wake are discretized. The surface of this model is

discretized using 1450 elements. The wake length is taken to be 10 times the maximum chord length and is discretized

using 20 and 40 elements in the spanwise and streamwise directions, respectively.
XY

Z

5° V∞

h
c =0.1

Fig. 1. Geometry of the three-dimensional wing and its wake in heaving oscillation (half of the wing is shown).

Fig. 2. Dimensions of the wing–body combination.
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Fig. 3. Geometry of the wing–body combination and its wake in heaving oscillation.
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Fig. 4. Eigenvalues of boundary element model of unsteady flow about the NACA 0012 airfoil.
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5.2. Eigenanalysis

The results of the conventional and present eigenanalysis are discussed in this section. The eigenvalues and

eigenvectors are computed using well-known IMSL routines (IMSL, 1980). Eigenvalues of the present method are

shown in Fig. 4 in comparison with those of the conventional method for the two-dimensional airfoil. The results show

that the eigenvalues of the present method are the same as the nonzero eigenvalues of the conventional method. In the

present eigenanalysis, the eigensystem is comprised of wake elements, except for the Kutta elements. Therefore, there

are no zero eigenvalues related to the body elements. On the other hand, in the conventional method, the eigensystem is

constructed using the body elements, as well as the wake elements. Therefore, there are 73 zero eigenvalues related to

the body and the Kutta elements, and 99 nonzero eigenvalues related to the wake elements.

Eigenvalues of the unsteady flow about the three-dimensional wing and wing–body combination are plotted in Figs. 5

and 6, respectively. As shown in these figures, the nonzero eigenvalues of the conventional method are the same as the

eigenvalues of the present method. However, as is shown in Figs. 5 and 6, relatively large differences exist between high-

frequency eigenvalues of the conventional and present eigensystems. Our numerical experience shows that the IMSL

eigensystem routines are sensitive to computational errors, e.g., roundoff errors, especially when the dimension of the

corresponding eigensystem is large. This sensitivity results in relatively large errors in the computation of the high-

frequency eigenvalues. Fortunately, these errors do not affect the CROM and PROM features, as both methods use

only low-frequency eigenmodes.



ARTICLE IN PRESS

Real [Z]

Im
ag

 [Z
]

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Fig. 5. Eigenvalues of boundary element model of unsteady flow about the three-dimensional wing: &, conventional method; +,

present method.
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Fig. 6. Eigenvalues of boundary element model of unsteady flow about the wing-body combination: &, conventional method; +,

present method.
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5.3. Reduced-order models

Next, we use the eigenmode information computed in the pervious section to construct the present reduced-order

aerodynamic model. Fig. 7 shows typical reduced-order model results for the pitch oscillation of the airfoil. The

pitching axis is at the quarter chord of the airfoil, the angle of attack, a ¼ 31+101 sin kT and the reduced frequency,

k ¼ 0.10. Although the angle of attack varies in a wide range (�71pap131) and the wake roll-up is not considered,

comparison of the present method with Katz and Maskew’s (1988) unsteady panel method is satisfactory. Also, the

figure illustrates PROM results in comparison with the direct method. Although PROM with 40 modes without static

correction is not capable of producing a suitable result especially in the pitching moment calculation, using the static

correction technique with just four modes, it results in a very good agreement with the direct method. However, if

sufficient eigenmodes are used, the static correction requirement will be removed. Figs. 8 and 9 present the results of the

airfoil oscillating at a ¼711 and Mach 0.50, with reduced frequencies k ¼ 0.10 and 0.40, respectively. The

Prandtl–Glauert compressibility correction is used to consider compressibility effects. The present BEM and PROM

results are in excellent agreement with the unsteady Euler solution used in Romanowski (1995). Also, the results show

that PROM without static correction can produce satisfactory results when enough eigenmodes are used.

As is shown in Fig. 1, the three-dimensional wing oscillates with an amplitude of h/c ¼ 0.10 about a 51 angle of

attack. Computed results for the lift variation during a heaving oscillation cycle with reduced frequencies k ¼ 0.10 and
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Fig. 8. Lift response versus time for a NACA 0012 airfoil at Mach 0.5 oscillating at a ¼711 about zero angle of attack with k ¼ 0.10.
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Fig. 7. Lift and pitching moment loops for the pitch oscillation of a NACA 0012 airfoil.
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Fig. 9. Lift response versus time for a NACA 0012 airfoil at Mach 0.5 oscillating at a ¼711 about zero angle of attack with k ¼ 0.40.
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Fig. 10. Lift variation during heaving oscillation with k ¼ 0.01, of a three-dimensional wing of NACA 0012 section.
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Fig. 11. Lift variation during heaving oscillation with k ¼ 0.30, of a three-dimensional wing of NACA 0012 section.
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0.30 are shown in Figs. 10 and 11, respectively. The results the direct method are in excellent agreement with those

presented in Katz and Maskew (1988). However, the figures show CROM and PROM results with four eigenmodes

with the static correction and results with 40 eigenmodes without static correction. As expected, PROM without static

correction shows good agreement with the direct method when enough eigenmodes are used. In addition, PROM along

with static correction gives satisfactory results with just a few eigenmodes.

Also, computed results for the lift variation of the wing–body combination during a heaving oscillation cycle with an

amplitude of h/c ¼ 0.10 about a 51 angle of attack and reduced frequency k ¼ 0.30 are presented in Fig. 12. The results

of CROM and PROM with four eigenmodes with static correction and with 40 eigenmodes without static correction are

compared with those of the direct method. The results show a good agreement between PROM and CROM with static

correction. As expected, PROM with enough eigenmodes and without static correction technique shows an excellent

agreement with the direct method. Moreover, PROM along with static correction gives satisfactory results with only a

few eigenmodes.
5.4. Efficiency analysis

Finally, the efficiency of PROM is discussed. To clarify the efficiency analysis, CPU times for PROM and CROM

with static correction technique, along with four eigenmodes, are compared. In addition, CPU times for eigenvalue

computations and ROM are presented separately. Table 1 indicates CPU times in seconds for the two-dimensional

airfoil, three-dimensional wing and wing–body combination. The results are based on numerical computations using a
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Table 1

CPU time (s) comparison between conventional and present method

Test case Number of elements Eigenanalysis ROM

Body Wake Conventional Present Conventional Conventional W LU Present Present W LU

Airfoil 72 100 0.3 0.1 8.6 — 3.8 —

Wing 872 800 380.5 102.7 737.5 — 173.3 —

Wing–body 1450 800 717.8 125.2 1430.8 870.3 221.1 116.3
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CROM : m=4 w/ static correction
CROM : m=40 w/o static correction
PROM : m=4 w/ static correction
PROM : m=40 w/o static correction

Fig. 12. Lift variation during heaving oscillation with k ¼ 0.30, of the wing–body combination.
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P4-3200MHz with 2-GB RAM. The results presented in Table 1 reveal that, regardless of the application of the LU

decomposition, the present method can analyze either eigensystem or ROM more efficiently than CROM with static

correction. The efficiency of the present method is due to the fact that the resulting eigensystem has a smaller dimension

than the conventional method, since it is represented based only on the wake elements. Therefore, the present method

will be more efficient when the ratio of the number of body elements to the number of wake elements is increased.

However, the application of the present method without the static correction technique is more efficient than CROM

because there is no need to compute the quasi-steady solution in each time step when enough eigenmodes are used.

Hence, the present method will be more efficient as time increases in time domain analysis.
6. Conclusions

This study demonstrates that PROM of unsteady flows in general two- and three-dimensional cases is more efficient

than the CROM. In the present method, the numerical eigensystem is only constructed using the wake singularities,

which results in the smaller dimension of the corresponding eigensystem. It was shown that the present reduced-order

model without the static correction technique can produce satisfactory results when enough eigenmodes are used. In

addition, one can use more efficiently the static correction technique along with the present approach to obtain

satisfactory results with a few eigenmodes. Finally, based on the present results, it can be concluded that the present

method is computationally more efficient than the conventional method. This efficiency is more evident for unsteady

flow computations around a complex configuration.
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